
Preference Leakage: A Contamination Problem in LLM-as-a-judge

Dawei Li * 1 Renliang Sun * 2 Yue Huang 3 Ming Zhong 4 Bohan Jiang 1

Jiawei Han 4 Xiangliang Zhang 3 Wei Wang 2 Huan Liu 1

Abstract
Large Language Models (LLMs) as judges and
LLM-based data synthesis have emerged as
two fundamental LLM-driven data annotation
methods in model development. While their com-
bination significantly enhances the efficiency of
model training and evaluation, little attention has
been given to the potential contamination brought
by this new model development paradigm. In this
work, we expose preference leakage, a contami-
nation problem in LLM-as-a-judge caused by the
relatedness between the synthetic data generators
and LLM-based evaluators. To study this issue,
we first define three common relatednesses
between data generator LLM and judge LLM:
being the same model, having an inheritance
relationship, and belonging to the same model
family. Through extensive experiments, we
empirically confirm the bias of judges towards
their related student models caused by preference
leakage across multiple LLM baselines and
benchmarks. Further analysis suggests that prefer-
ence leakage is a pervasive issue that is harder to
detect compared to previously identified biases in
LLM-as-a-judge scenarios. All of these findings
imply that preference leakage is a widespread
and challenging problem in the area of LLM-
as-a-judge. We release all codes and data at:
https://github.com/David-Li0406/
Preference-Leakage1.

1. Introduction
Recent advancements in Large Language Models
(LLMs) (Achiam et al., 2023; Jaech et al., 2024; Tong
et al., 2024; Zhang et al., 2024a) have empowered various

*Equal contribution 1Arizona State University 2University of
California, Los Angeles 3University of Notre Dame 4University
of Illinois Urbana Champaign. Correspondence to: Dawei Li
<daweili5@asu.edu>.

1More resources on LLM-as-a-judge are on the website:
https://llm-as-a-judge.github.io/

downstream tasks and applications. However, this also
poses substantial challenges to the automatic evaluation
of these models. Representatively, LLM-based AI agents’
focus transfer from traditional natural language processing
tasks (Yang et al., 2023; Zhang et al., 2023) to real-world
(Liu et al., 2023b; Huang et al., 2023), open-ended response
generation (Wu et al., 2024), which greatly limits the
applicability of traditional n-gram matching methods (e.g.,
BLEU (Papineni et al., 2002) and ROUGE (Lin, 2004)) (Liu
et al., 2016; Reiter, 2018) or model-based evaluators (Zhang
et al., 2020; Zhong et al., 2022) for evaluation.

To address these challenges, the paradigm of LLM-as-a-
judge (Zheng et al., 2023; Li et al., 2024a; Jiang et al., 2024a;
Zhong et al., 2024; Li et al., 2025) has been proposed, de-
signed to leverage LLM as evaluators to assess response
quality. By combining powerful LLMs with well-designed
prompting strategies, LLM-as-a-judge enables human-like
evaluation of long-form and open-ended generation in a
more cost-efficient and scalable manner. However, recent
studies point out some weaknesses of such assessment. For
instance, Ye et al. (2024) explores various biases and vulner-
abilities of LLM-as-a-judge, highlighting the importance of
developing a reliable and fair LLM-based evaluation system.

In this work, we aim to introduce another concern in LLM-
as-a-Judge–Preference Leakage. This issue arises when the
LLMs used for data generation and evaluation are closely re-
lated, as illustrated in Figure 1. Synthetic data generated by
LLMs (Gan et al., 2023; Tan et al., 2024; Li et al., 2024b;c)
has become a cornerstone of model training (Lee et al.,
2025). When combined with LLM-as-a-Judge, they offer
significant efficiency gains in model development. However,
limited attention has been given to the potential contami-
nation that occurs when the generator and evaluator LLMs
share a close relationship. During our preliminary study,
we find this issue is particularly pervasive in popular LLM-
as-a-judge benchmarks (e.g., AlpacaEval 2.0 (Dubois et al.,
2024) and Arena-Hard (Li et al., 2024e)) and LLM-relevant
studies (more details can be found in Appendix A), due to
the common reliance on the most advanced LLMs, such
as GPT-4 (Achiam et al., 2023), for both data synthesis
and evaluation to ensure the highest quality outputs. In our
work, we reveal this relatedness—akin to the overlap be-
tween training data and evaluation sets in traditional data

1

ar
X

iv
:2

50
2.

01
53

4v
1

 [
cs

.L
G

]
 3

 F
eb

 2
02

5

https://github.com/David-Li0406/Preference-Leakage
https://github.com/David-Li0406/Preference-Leakage
https://llm-as-a-judge.github.io/

Preference Leakage: A Contamination Problem in LLM-as-a-judge

contamination—would introduce a systematic bias of judge
LLMs towards their related student models (i.e., the model
distilled by the data generator which is related to the judge).
Compared to other biases in LLM-as-a-Judge, such as length
bias or egocentric bias (Ye et al., 2024; Panickssery et al.,
2024), preference leakage is subtler and more challenging
to detect, especially given that most LLMs do not disclose
their training data.

To investigate and reveal the preference leakage problem,
we first define three relatednesses between data generator
LLM and judge LLM: being the same model, having an
inheritance relationship, and belonging to the same model
family. Each of these scenarios is commonly encountered
in real-world applications. Then, we pose and answer three
core research questions about preference leakage:

• RQ1: Does preference leakage introduce systematic
biases in LLM-based evaluation? To answer it, we
conduct experiments with various LLM baselines in two
widely recognized LLM-as-a-judge benchmarks, also in-
troduce the preference leakage score to quantify the bias
caused by preference leakage. The analysis results sug-
gest an obvious bias of judging LLMs toward their related
student models.

• RQ2: What is the severity of preference leakage under
various scenarios? We conduct experiments under vari-
ous relatedness settings, tuning techniques, and data mix-
ing strategies to address it, finding that preference leakage
consistently affects judge LLMs. Moreover, the severity
of preference leakage correlates with the degree of relat-
edness between the data generator and LLM judges, as
well as the proportion of synthetic data.

• RQ3: What are the underlying mechanisms causing
preference leakage? For this question, we analyze LLMs’
recognition capabilities on their related student models’
generation as well as the distribution of bias across differ-
ent question types and judgment dimensions. The analysis
reveals that preference leakage is a subtle, hard-to-detect
issue, particularly affecting subjective questions and judg-
ment dimensions.

To summarize, our contributions in this work are as follows:

• We introduce preference leakage, a contamination issue
arising from the relatedness between the data generator
and judge LLMs.

• We conduct extensive experiments across various LLMs
and benchmarks to study how and to what extent the
potential bias brought by preference leakage influences
judgment.

• Our further analysis reveals that preference leakage is
prevalent in diverse scenarios and difficult for judge LLMs
to detect, providing valuable insights for future research
on this challenging issue.

2. Related Work
2.1. LLM-as-a-Judge

LLM-as-a-Judge, introduced by Zheng et al. (2023), lever-
ages LLMs to automatically evaluate responses and assign
rewards. This approach has gained widespread adoption
in areas such as model alignment (Zhang et al., 2024d)
and benchmarking (Liu et al., 2023a; Zhang et al., 2024b;
Gao et al., 2023; Zhong et al., 2024), driving significant
progress in the field. Building on this concept, Zhuge et al.
(2024) proposed Agent-as-a-Judge, where agentic systems
are employed to evaluate other agentic systems. Addition-
ally, Prometheus, a series of open-source LLMs tailored for
LLM-as-a-Judge (Kim et al., 2023; 2024), addresses the
prohibitive costs associated with proprietary models, further
democratizing the technology.

Despite its promising potential, recent studies have high-
lighted the vulnerabilities and limitations of LLM-as-a-
Judge. Notable concerns include biases during evaluation.
For example, Zheng et al. (2023) identify position bias,
where LLMs may favor responses based on their order in
the input, thereby compromising fairness. Other studies (Ye
et al., 2024; Koo et al., 2023; Chen et al., 2024; Zheng et al.,
2023; Huang et al., 2024) further emphasize the risks of
evaluation biases. Thakur et al. (2024) assessed the judg-
ment capabilities of LLM judges, finding that only the most
advanced models align reasonably well with human evalu-
ators. Moreover, a recent study (Shi et al., 2024) revealed
the susceptibility of LLM-as-a-Judge to adversarial attacks,
leading to incorrect judgments. In this paper, we explore an-
other critical vulnerability of LLM-as-a-Judge—preference
leakage—which poses additional risks to the reliability of
this evaluation paradigm.

2.2. Data Leakage

The possible overlap between training data and evaluation
benchmarks has become a central issue, since LLMs are usu-
ally trained on extensive web corpora (Dodge et al., 2021).
This phenomenon, known as data leakage, can artificially
improve the performance of LLMs and undermine the re-
liability of the assessment (Deng et al., 2024a; Jiang et al.,
2024b).

Several researchers have proposed methods to detect and
mitigate data contamination. Deng et al. (2024b) proposed
a retrieval-based approach to assess the degree of overlap
between pre-training text and benchmark data. Golchin &
Surdeanu (2023) have developed “guided instruction” to
flag contaminated instances. Dong et al. (2024b) proposed
the CDD method to identify peaks in the output distribution
to detect data contamination. Several studies analyze data
leakage for specific LLMs (Balloccu et al., 2024) and report
contamination such as cross-language contamination (Yao

2

Preference Leakage: A Contamination Problem in LLM-as-a-judge

Evaluation

Testset

Training

Corpus

Data leakage

Train

Training

Corpus
Evaluation

Testset

Evaluate

Data Leakage!

Synthetic

Data
Data

Generator

Trained

Model

Trained

Model

Trained

Model

Judge

Judge

Model

Preference Leakage!

Relatedness

Overlap

LLM for Data

Synthesis

LLM-as-

a-Judge

Preference leakage

Train

(1). Same model

(2). Inheritance

Synthetic

data

(3). Within the

same model family

Synthesize

Figure 1. Overview of preference leakage. We make a comparison between data leakage and preference leakage and present three types of
relatedness: being the same model, having an inheritance relationship and belonging to the same model family.

et al., 2024) and task contamination (Li & Flanigan, 2024)
that can evade traditional detection methods. To address data
contamination issues, Ni et al. (2024) have used web user
query detection and benchmark mixture. White et al. (2024)
use the most recent information to update the problem.

3. Preference Leakage
In this section, we first provide the formal definition of data
contamination as the preliminary (Section 3.1). Based on
the concept, we demonstrate how LLM-based data synthesis
and evaluation can lead to the evolving preference leakage
problem (Section 3.2).

3.1. Preliminary: Data Leakage

Data leakage, also known as data contamination, refers to
the inadvertent inclusion of information from the evalua-
tion benchmarks into the training corpus thus creating an
overlap between training and testing sets (Kaufman et al.,
2012). This overlap would significantly influence the eval-
uation fairness by inflating the models’ performance since
the model has prior exposure to and memorized information
that it’s expected to generalize during testing (Elangovan
et al., 2021).

Formally, let T represent the training corpus and E be the
evaluation set during test time. Data contamination occurs
if:

T ∩ E ̸= ∅, (1)

where ∩ denotes the intersection between the two sets. Such
overlap violates the fundamental assumption that training
and testing datasets should be disjoint to ensure an unbiased
assessment of the model’s generalization ability.

3.2. From Data Leakage to Preference Leakage

With the advent of LLMs, synthetic data generated by these
models (Tan et al., 2024) has been widely adopted in var-
ious stages of model training, including pre-training, rein-
forcement learning with AI feedback (RLAIF) and super-
vised fine-tuning. Concurrently, the concept of LLM-as-
a-judge has emerged, where LLMs are employed to auto-
mate the evaluation process. While these LLM-as-an-oracle
approaches reduce human effort in data annotation, signif-
icantly enhancing the efficiency and scalability of model
training and evaluation, they also blur the lines between
models and data, introducing evolving challenges (Shu-
mailov et al., 2024; Dai et al., 2024).

In this work, we examine the evolving contamination prob-
lem brought by LLM-as-a-oracle and formally propose the
concept of preference leakage. This refers to a situation
in which the LLMs used for synthetic data generation and
evaluation are related. Formally, we define this as:

LLMG ∩ LLMJ ̸= ∅, (2)

where LLMG and LLMJ denote the LLMs used for train-
ing data generation and evaluation. ∩ represents the related-
ness between the two (sets of) LLMs. This relatedness may
involve:

• Being the same model: the data generator and evaluator
are the same model:

LLMG = LLMJ . (3)

• Inheritance relationship: one model is trained on syn-
thetic data generated by the other:

LLMG = Inherit(LLMJ), (4)

LLMJ = Inherit(LLMG). (5)

3

Preference Leakage: A Contamination Problem in LLM-as-a-judge

• Within the same model family: the data generator and
evaluator belong to the same model family (e.g., GPT
family (Achiam et al., 2023) and Gemini family (Team
et al., 2024)):

LLMG, LLMJ ∈ FX . (6)

Due to this relatedness, the preference of the judge models
(e.g., format, style and wording) can be leaked to the student
models through the synthetic data, resulting in non-trivial
bias from the judge LLMs during the test time.

4. Main Experiment
4.1. Experiment Setup

Models. We choose three powerful LLMs as data generator/
judge models. They are GPT-4o-2024-11-20 (Achiam et al.,
2023), Gemini-1.5-flash (Team et al., 2024), and LLaMA-
3.3-70B-Instruct-turbo (Dubey et al., 2024). For the student
model, we choose Mistral-7B-v0.1 (Jiang et al., 2023) and
Qwen-2.5-14B (Yang et al., 2024). To avoid potential prefer-
ence leakage due to distilling data from other LLMs during
the instruction-tuning process, we choose to use the -PRE-
TRAINED version rather than the -INSTRUCT version of
these student models.

Evaluation Datasets. We choose two representative pair-
wise evaluation datasets, Arena-Hard (Li et al., 2024e)
and AlpacaEval 2.0 (Dubois et al., 2024), to evaluate the
trained student models. Arena-Hard includes 500 challeng-
ing questions in English. Additionally, the evaluation agree-
ment between Arena-Hard and Chatbot Arena (Zheng et al.,
2023)’s hard prompts achieved a 96.7% Spearman corre-
lation, demonstrating the consistency of Arena-Hard with
human preferences (Li et al., 2024e). AlpacaEval 2.0 is an
improved evaluation method based on AlpacaEval (Li et al.,
2023) and contains 805 questions. Compared to version 1.0,
AlpacaEval 2.0 significantly reduces the effect of text length
on the evaluation results.

Implementation Details. In our main experiment, we ex-
amine the preference leakage introduced by using the same
data generator and evaluator in supervised fine-tuning (SFT).
We will discuss other relatedness and learning methods in
Section 5. To obtain synthetic datasets, We first randomly
sample 30,000 prompts from the Ultrafeedback dataset (Cui
et al., 2024). The Ultrafeedback dataset includes instruc-
tions from several publicly available high-quality datasets
such as TruthfulQA (Lin et al., 2022), FalseQA (Hu et al.,
2023), and Evol-Instruct (Xu et al., 2023). For each data gen-
erator model, we provide these prompts for them to produce
synthetic responses, resulting in three synthetic instruction
datasets. We then use each dataset to supervised fine-tune
the student model, obtaining three different versions for each
baseline: Mistral/ Qwen-GPT-4o, Mistral/ Qwen-Gemini-

1.5 and Mistral/ Qwen-LLaMA-3.3. After that, we pair each
two student models and obtain three model pairs. For each
model pair, we perform the pairwise comparison using the
three judge models respectively.

Metrics & Annotation Based on our hypothesis, preference
leakage would lead to bias of judge LLMs towards their
related student models. Following this principle, we design
the preference leakage score PLS(i, j) to measure the bias
in model pair (i, j) caused by preference leakage:

PLS(i, j) =

(
WR(i,i)−AVG(i,j)

AVG(i,j)

)
+
(

WR(j,j)−AVG(j,i)
AVG(j,i)

)
2

,

(7)

AVG(i, j) =
WR(i, i) + WR(i, j)

2
. (8)

Here WR(i, j) represents the win-rate score from judge
model i to student model j. Intuitively, a large preference
leakage score indicates that the two judge models demon-
strate strong bias toward their related student models, sug-
gesting a significant preference leakage phenomenon.

While our proposed preference leakage score quantifies the
degree of preference leakage in each model pair, we also
perform manual annotation to assess the preference leakage
in each individual model. We randomly select 100 questions
from AlpacaEval 2.0 and have three well-trained annota-
tors perform pairwise comparisons independently for each
response pair. After the annotation, the majority voting is
applied to each response pair to get the final annotation
results.

More details about model training, metric explanation, and
annotation process can be found in Appendix B.

Model Data Generator/ Judge Pair Arena-Hard AlpacaEval 2.0 Avg.
GPT-4o & Gemini-1.5 28.7% 18.4% 23.6%
GPT-4o & LLaMA-3.3 -6.7% 1.4% -2.7%Mistral-7B
LLaMA-3.3 & Gemini-1.5 13.1% 19.8% 16.4%
GPT-4o & Gemini-1.5 37.1% 18.6% 27.9%
GPT-4o & LLaMA-3.3 1.0% 2.3% 1.7%Qwen-2.5-14B
LLaMA-3.3 & Gemini-1.5 25.4% 18.4% 21.9%

Table 1. Preference leakage score result on Arena-Hard and Al-
pacaEval 2.0. The blue background indicates a negative prefer-
ence leakage score value and the purple background indicates a
positive value. The deeper the color, the larger the absolute value.

4.2. Main Results

In our main experiment, we aim to provide insights into
RQ1.

Preference leakage exists in most model pairs. The origi-
nal judgment results from Arena-Hard and AlpacaEval 2.0,
along with the calculated preference leakage scores, are
shown in Figure 2, Figure 3, and Table 1. As the results
demonstrate, in most model pairs (except Mistral-GPT-4o vs

4

Preference Leakage: A Contamination Problem in LLM-as-a-judge

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

Gemini-1.5

LLaMA-3.3

GPT-4o

18.2% 39.8% 42.0%

27.4% 43.8% 28.8%

38.4% 34.6% 27.0%

Mistral-GPT4o vs Mistral-Gemini-1.5

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

46.2% 42.7% 11.1%

50.4% 35.0% 14.6%

55.8% 27.0% 17.2%

Mistral-GPT4o vs Mistral-LLaMA-3.3

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

9.2% 31.4% 59.4%

14.6% 30.0% 55.4%

22.2% 30.8% 47.0%

Mistral-LLaMA-3.3 vs Mistral-Gemini-1.5

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

Gemini-1.5

LLaMA-3.3

GPT-4o

22.0% 33.5% 44.5%

28.8% 50.2% 21.6%

49.8% 29.0% 21.2%Ju
dg

e
M

od
el

Qwen-GPT4o vs Qwen-Gemini-1.5

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

52.1% 40.7% 7.2%

39.0% 51.8% 9.2%

57.4% 29.6% 13.0%

Qwen-GPT4o vs Qwen-LLaMA-3.3

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

10.0% 29.4% 60.6%

16.4% 48.4% 35.2%

24.6% 30.0% 44.4%

Qwen-LLaMA-3.3 vs Qwen-Gemini-1.5

(a). Mistral-7B

(b). Qwen-2.5-14B
Model A Wins Tie Model B Wins

Figure 2. Judgment results with GPT-4o, LLaMA-3.3 and Gemini-1.5 on Arena-Hard.

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

Gemini-1.5

LLaMA-3.3

GPT-4o

36.8% 63.2%

49.5% 50.5%

55.1% 44.9%

Mistral-GPT4o vs Mistral-Gemini-1.5

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

65.8% 34.2%

60.3% 39.7%

61.6% 38.4%

Mistral-GPT4o vs Mistral-LLaMA-3.3

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

22.6% 77.4%

39.5% 60.5%

43.1% 56.9%

Mistral-LLaMA-3.3 vs Mistral-Gemini-1.5

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

Gemini-1.5

LLaMA-3.3

GPT-4o

39.3% 60.7%

52.4% 47.6%

57.8% 42.2%Ju
dg

e
M

od
el

Qwen-GPT4o vs Qwen-Gemini-1.5

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

63.3% 36.7%

59.3% 40.7%

61.5% 38.5%

Qwen-GPT4o vs Qwen-LLaMA-3.3

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

26.2% 73.8%

42.9% 57.1%

50.1% 49.9%

Qwen-LLaMA-3.3 vs Qwen-Gemini-1.5

(a). Mistral-7B

(b). Qwen-2.5-14B
Model A Wins Model B Wins

Figure 3. Judgment results with GPT-4o, LLaMA-3.3 and Gemini-1.5 on AlpacaEval 2.0. Different from Arena-Hard, there is no tie in
AlpacaEval 2.0.

Mistral-LLaMA-3.3 and Qwen-GPT-4o vs Qwen-LLaMA-
3.3), the judge LLMs exhibit a strong preference toward
their related student models, leading to large positive val-
ues in the preference leakage scores. This finding suggests
that preference leakage, along with the resulting bias, is
widespread in SFT when the data generator and evaluator
are the same.

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

Human

GPT-4

73.6% 8.8% 17.6%

79.5% 1.7%18.8%

LLaMA-2 vs Others

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

Human

GPT-4

76.2% 17.9% 6.0%

79.8% 20.2%0.0%Ju
dg

e
M

od
el

LLaMA-2 vs Claude-v1

Model A Wins Tie Model B Wins

Figure 4. Comparison between GPT-4 and human’s judgment for
LLaMA-2 from MTBench.
Evaluators’ bias towards certain LLMs can be inherited

by its student models. From Figure 2 and Figure 3, we find
an obvious preference of GPT-4o towards Mistral/ Qwen-
LLaMA-3.3 and this leads to the low preference leakage
score in the Mistral-GPT-4o vs Mistral-LLaMA-3.3 and
Qwen-GPT-4o vs Qwen-LLaMA-3.3 pairs. To investigate
the source of this preference, we examine whether the GPT-
4 evaluator has a bias toward LLaMA series models. Using
the MTBench (Zheng et al., 2023) dataset, which includes
pairwise comparison judgments from both humans and GPT-
4, we compare GPT-4’s and human evaluators’ judgments
on LLaMA-2 vs other models (including Vicuna, Alpaca,
GPT-3.5, and GPT-4, which are preferred by GPT-4 due
to preference leakage or egocentric bias) and LLaMA-2 vs
Claude. The results, shown in Figure 4, reveal a clear pref-
erence for LLaMA-2 by GPT-4. Consequently, we conclude
that evaluators’ bias can be inherited. In this case, GPT-4’s
bias toward LLaMA has been passed on to LLaMA’s stu-
dent models. This inheritance, combined with the opaque
training data of LLMs, makes preference leakage a more
complex and challenging problem.

Model pairs with similar performance tend to have more

5

Preference Leakage: A Contamination Problem in LLM-as-a-judge

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

Human

Gemini-1.5

LLaMA-3.3

GPT-4o

53.0% 47.0%

40.2% 59.8%

49.4% 50.6%

58.4% 41.6%

Ju
dg

e
M

od
el

Mistral-GPT4o vs Mistral-Gemini-1.5

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

62.0% 38.0%

76.2% 23.8%

72.1% 27.9%

67.8% 32.2%

Mistral-GPT4o vs Mistral-LLaMA-3.3

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

36.0% 64.0%

17.1% 82.9%

39.0% 61.0%

46.0% 54.0%

Mistral-LLaMA-3.3 vs Mistral-Gemini-1.5

Model A Wins Model B Wins

Figure 5. Manual annotation result on 100 randomly selected samples from AlpacaEval 2.0.

obvious preference leakage. As shown in Table 1, we ob-
serve that the preference leakage scores for Mistral-GPT-4o
vs Mistral-Gemini-1.5 and Qwen-GPT-4o vs Qwen-Gemini-
1.5 (23.6% and 27.9% respectively) are consistently higher
than that for Mistral-LLaMA-3.3 vs Mistral-Gemini-1.5 and
Qwen-LLaMA-3.3 vs Qwen-Gemini-1.5 (16.4% and 21.9%
respectively). We think that this is largely due to the more
comparable performance between the student models of
GPT-4o and Gemini-1.5. Intuitively, when the quality of the
two responses is similar, the evaluator may rely more heav-
ily on its inherent preferences to make a judgment, thereby
exacerbating the preference leakage issue.

Larger student models cause more bias from judge
LLMs. Another observation from Table 1 is that the over-
all preference leakage score for Qwen-2.5-14B is higher
than that for Mistral-7B. Drawing on insights from previous
studies on data leakage, which suggest that larger and more
powerful LLMs are more capable of memorizing extensive
information and are thus more susceptible to data contamina-
tion (Bordt et al., 2024; Duan et al., 2024), we attribute this
difference in preference leakage to the size and capabilities
of the student LLMs. We assume that larger student models,
due to their better performance and generalization abilities,
are more capable of learning and memorizing the hidden
preference pattern from the synthetic data, thus leading to a
more serious preference leakage.

Different data generator/ judge LLMs result in varying
degrees of bias under preference leakage. While we have
concluded that student model pairs with similar performance
or more powerful student models tend to exhibit greater
preference leakage, we also examine whether different data
generator and judge LLMs contribute to varying degrees
of preference leakage. Analyzing the manual annotation
results presented in Table 5, we observe that Gemini-1.5
shows a strong bias toward its students, followed by GPT-4o,
with LLaMA-3.3 displaying the least bias. This variation in
preference leakage may stem from differences in the level
of leaked preference in the synthetic responses generated
by the data generator LLMs. For instance, an LLM with a
distinctive style or format in its responses offers more op-
portunities for student models to learn these characteristics,
potentially leading to more pronounced preference leakage

during evaluation. Future work could further quantify the
extent of leaked preference for each data generator model.

5. Further Analysis
In this section, we conduct relatedness analysis, learning
method analysis and data mixing analysis (Section 5.1 - 5.3)
to answer RQ2. Due to the cost consideration, we conduct
these analyses on Mistral-GPT-4o vs Mistral-Gemini-1.5.
Moreover, we perform recognition analysis and category
analysis to answer RQ3.

Arena-Hard AlpacaEval 2.0 Avg.
Same Model 28.7% 18.4% 23.6%
Inheritance

w/ same ins. 17.8% 20.7% 19.3%

Inheritance
w/ different ins. 18.3% 26.3% 22.3%

Same Family
w/ same series 10.1% 7.6% 8.9%

Same Family
w/ different series 3.3% 2.2% 2.8%

Table 2. Preference leakage score in different relatedness between
the data generator and the judging LLM.

5.1. Relatedness Analysis

We demonstrate the impact of different relatedness condi-
tions between the data generator and the judge LLM on the
preference leakage problem, as shown in Table 2.

Preference leakage under inheritance settings causes ob-
vious bias of judges towards their related students. For
the inheritance relationship, we consider the situation where
the data generator is inherited from the judge model. We
conducted the following two experiments: (1). we give the
same instructions again as in the SFT stage (Inheritance w/
same ins.), or (2). we sample the same number of different
instructions from the Ultrafeedback (Inherence w/ different
ins.). Then, we let the fine-tuned Mistral model generate
the answers and use these generated data to fine-tune a new
Mistral student model. From the results, with the same in-
structions, the average preference leakage score is 19.3%. In
comparison, the score with different instructions is 22.3%.

6

Preference Leakage: A Contamination Problem in LLM-as-a-judge

Firstly, in an inheritance setting, data generators can inherit
judges’ preferences, which are then passed on to new stu-
dent models, thereby compromising the fairness of their
evaluation. Second, even when different instructions are
used, judges’ preferences leaked to data generators can still
be transferred to the new student model through synthetic
data, leading to a high preference leakage score.

Models within the same series tend to cause more sig-
nificant bias. For two models within the same family, we
consider two settings: (1) Same series, where training data
is generated by GPT-4o and Gemini-1.5-flash, and judged
by GPT-4-turbo and Gemini-1.5-pro; (2) Different series,
where training data is still generated by GPT-4o and Gemini-
1.5-flash, but judged by GPT-3.5-turbo and Gemini-1.0-pro.
In the same series setting, the average preference leakage
score is 8.9%, indicating that despite using different mod-
els for data generation and judgment, their relatedness in
terms of model family leads to some preference leakage.
In contrast, the different series setting yields a significantly
lower leakage score of 2.8%, likely due to differences in
architecture, training data, and other factors, reducing the
influence of model-related biases in evaluation.

Arena-Hard AlpacaEval 2.0 Avg.
SFT 28.7% 18.4% 23.6%
DPO 7.7% 2.7% 5.2%
ICL -4.2% -1.1% -2.7%

Table 3. Preference leakage score in different learning methods.

5.2. Learning Method Analysis

We also compare three learning methods, supervised
fine-tuning (SFT), direct preference optimization (DPO)
(Rafailov et al., 2024), and in-context learning (ICL) (Dong
et al., 2024a), to explore the different influences to them un-
der preference leakage. We first build a data pool based on
human-written instruction-tuning data from OASST (Köpf
et al., 2024), LIMA (Zhou et al., 2024), and MOSS (Sun
et al., 2024b) to supervised fine-tune the pre-trained model.
For DPO, we sample 2 responses for each instruction from
sampled UltraFeedback instruction and prompt each data
generator to produce the pairwise feedback. Then we use
the DPO loss to further train the fine-tuned policy on each
synthetic pairwise dataset. Appendix C shows the prompt
we use to craft synthetic pairwise feedback. For ICL, we
sample 4 instruction-response pairs from each LLMs’ syn-
thetic dataset as the demonstration during inference.

Tuning approaches would leak judges’ preference to the
student models. Various learning methods show significant
differences in preference leakage scores across learning
methods. SFT exhibits the highest average leakage score at
23.6%. In contrast, DPO achieves a much lower score of
5.2%, likely because its focus on preferences helps minimize
the unintended transfer of judge model biases. Meanwhile,

ICL, which relies on contextual examples without updating
model parameters, is least affected by the data generator’s
preferences, resulting in the lowest leakage scores.

20 40 60 80 100
Contamination Ratio (%)

0

5

10

15

20

25

30

Pr
ef

er
en

ce
 L

ea
ka

ge
 S

co
re

 (%
)

AlpacaEval2.0 - Manual
ArenaHard - Manual
AlpacaEval2.0 - Synthetic
ArenaHard - Synthetic

Figure 6. Experiment results on data mixing. ‘Manual’ represents
the original synthetic data mixed with manually-written data. ‘Syn-
thetic’ represents the original data mixed with other synthetic data.

5.3. Data Mixing Analysis

In real-world applications, synthetic data from a single LLM
is often mixed with manually-written data or other multi-
source synthetic data to train student models. To mimic
these scenarios and explore how much synthetic data could
lead to preference leakage, we conduct a data mixing anal-
ysis. Specifically, we randomly sample 10%, 30%, 50%,
and 70% from the original synthetic dataset and mix it with
manually-written data and multi-source synthetic data, re-
spectively, in order to maintain a consistent total volume of
training data (30,000). For the manually-written data, we
sample from the data pool collected in Section 5.2. For the
multi-source synthetic data, we use the original synthetic
data from Ultrafeedback, which includes responses gener-
ated by various LLMs (e.g., WizardLM, Flcon, etc.). After
obtaining the mixing training data, we train the student mod-
els using SFT and calculate their preference leakage scores
based on the judgment results. Figure 6 presents the results
with two mixing strategies across two benchmarks.

The degree of preference leakage is directly proportional
to the amount of synthetic data. We observe a strong
correlation between the proportion of synthetic data in the
mixture and the preference leakage score, with no clear
threshold separating cases with preference leakage from
those without. This suggests that preference leakage can
occur even with a small amount of leaked synthetic data,
posing significant challenges for its detection.

5.4. Can Judges Recognize Student Models?

Previous studies demonstrate the LLM judges can recog-
nize and thus prefer their own generation (Panickssery et al.,
2024). In this work, we pose a similar question: Does prefer-
ence leakage also source from the LLM judges’ recognition

7

Preference Leakage: A Contamination Problem in LLM-as-a-judge

Math
em

ati
cs

Busi
ne

ss

Daily
 Lif

e

Sci
en

ce
Writi

ng
Othe

rs

Pro
gra

mming
0

10

20

30
Pr

ef
er

en
ce

 L
ea

ka
ge

 S
co

re
 (%

)

7.7

16.5 17.2 17.3
21.0

23.8

31.4

(a) Question Type
Com

ple
ten

ess
Clar

ity

Rich
ne

ss

Sa
tisf

act
ion

Fac
tua

lity

Log
ica

l

Othe
rs

Crea
tiv

ity

Fai
rne

ss
20

24

28

32

Pr
ef

er
en

ce
 L

ea
ka

ge
 S

co
re

 (%
)

27.9
28.6 28.8 29.0 29.2

30.2 30.4 30.7
32.4

(b) Judgment dimension

Figure 7. Category analysis results on question type and judgment dimension.

Task Model Accuracy

Student Recognition
GPT-4o 60.0%

Gemini-1.5 25.4%
LLaMA-3.3 54.2%

Response Classification BERT 82.4%

Table 4. Student recognition (binary classification) and response
classification results (three-class classification).

of their related student models’ generation? To study this,
we follow Panickssery et al. (2024) to prompt the three
judge LLMs and test whether they could recognize their
related student models’ generation. Additionally, we split
three student models’ generation into training and testing
sets, and train a BERT classifier to perform a three-class
classification inspired by the previous study on detecting
human-AI text (Zhang et al., 2024c). Detailed instruction
and training settings can be found in Appendix D.

Judge LLMs do not show good performance in recogniz-
ing the generation of their student models. As the result
presented in Table 4, we find that the recognition perfor-
mance of each judge LLM in the content of related students
is poor, with accuracy around the performance of random
guess. Moreover, we observe no correlation between recog-
nition performance and the preference leakage degree for
judge LLMs. For instance, while Gemini-1.5 leads to the
most preference leakage (as shown in Section 4.2), it per-
forms the worst in recognition tasks. These suggest that
preference leakage is subtler and harder-to-detect for judge
LLMs, in contrast to the more obvious egocentric bias.

Certain features embedded in student models through
synthetic data. Although judge LLMs do not perform
well in related student recognition, we notice the fine-tuned
BERT classification demonstrates a high accuracy score in
classifier response generated by each student model. This
suggests that certain characteristics—such as style and for-
mat—are embedded in the student models through the syn-
thetic responses. This finding further supports the existence
of preference leakage and lays the groundwork for future
research aimed at detecting and preventing it.

5.5. Impact on Question Type & Judgment Dimension

In this section, we explore the impact of preference leakage
across various question types and judgment dimensions. For
the question type analysis, we first propose several general
question types based on the question clusters introduced by
Arena-Hard. Then, we prompt GPT-4o to map each question
in Arena-Hard and AlpacaEval to one of the question types
and calculate the preference leakage score for each question
category. For the judgment dimension analysis, we follow
the judgment dimensions introduced by Liu et al. (2023a)
and also utilize GPT-4o to map the rationale generated by
judge LLMs to one or multiple judgment dimensions. More
detailed prompt can be found in Appendix E. The analysis
results are presented in Figure 7.

Subjective question and judgment dimension tend to
lead to more bias. For question type analysis, we find ob-
jective questions with a definitive answer, like mathematical
ones, demonstrate the least preference leakage. By contrast,
subjective questions that have more than one standard an-
swer, such as programming and writing, usually lead to a
more obvious preference leakage. This observation is also
applied to judgment dimension analysis, as objective di-
mensions (like completeness) have an overall lower leakage
degree compared with subjective ones (like fairness). This
suggests that preference leakage tends to be more significant
in objective questions and dimensions, where the contami-
nated model is more likely to receive biased preference.

6. Conclusion
In this work, we formally highlight the preference leakage
problem in LLM-as-a-judge systems. The results of our
main experiment, measured using the proposed preference
leakage score, reveal a clear bias in each judge toward its
respective student model. We also observe that this bias
is more pronounced in comparable model pairs and larger
student models. Furthermore, we conduct additional anal-
ysis on various factors, including the relationship between
the data generator and judge LLMs, model tuning tech-

8

Preference Leakage: A Contamination Problem in LLM-as-a-judge

niques, and data mixing strategies. Our findings suggest
that preference leakage can cause significant bias across
diverse scenarios. Finally, through recognition and category
analyses, we investigate the underlying mechanisms of pref-
erence leakage, demonstrating that it is a challenging and
hard-to-detect issue, especially in subjective questions and
judgment dimensions. In the future, we aim to explore meth-
ods for detecting, preventing, and mitigating this evolving
challenge in LLM-as-a-judge systems.

Impact Statements
By revealing preference leakage, this work could help build
more trustworthy and ethically grounded AI systems. The
relatedness between data generators and evaluators can sys-
tematically bias evaluations, potentially compromising the
fairness and reliability of the automatic evaluation paradigm.
These biased evaluations may indirectly affect downstream
tasks such as AI alignment and decision-making systems,
leading to unintended ethical risks. To mitigate preference
leakage, we hope that researchers will propose more reli-
able evaluation methods, diversify training data sources, and
develop contamination-resistant benchmarks in the future.

References
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,

Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. ArXiv preprint,
abs/2303.08774, 2023. URL https://arxiv.org/
abs/2303.08774.

Balloccu, S., Schmidtová, P., Lango, M., and Dušek, O.
Leak, cheat, repeat: Data contamination and evaluation
malpractices in closed-source llms. In Proceedings of the
18th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics (Volume 1: Long
Papers), pp. 67–93, 2024.

Bordt, S., Nori, H., and Caruana, R. Elephants never forget:
Testing language models for memorization of tabular data.
In NeurIPS 2023 Second Table Representation Learning
Workshop, 2024.

Chen, G. H., Chen, S., Liu, Z., Jiang, F., and Wang, B.
Humans or llms as the judge? a study on judgement
biases. arXiv preprint arXiv:2402.10669, 2024.

Cui, G., Yuan, L., Ding, N., Yao, G., He, B., Zhu, W., Ni, Y.,
Xie, G., Xie, R., Lin, Y., et al. Ultrafeedback: Boosting
language models with scaled ai feedback. In Forty-first
International Conference on Machine Learning, 2024.

Dai, S., Xu, C., Xu, S., Pang, L., Dong, Z., and Xu, J. Bias
and unfairness in information retrieval systems: New
challenges in the llm era. In Proceedings of the 30th

ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pp. 6437–6447, 2024.

Deng, C., Zhao, Y., Heng, Y., Li, Y., Cao, J., Tang, X.,
and Cohan, A. Unveiling the spectrum of data contami-
nation in language models: A survey from detection to
remediation. arXiv preprint arXiv:2406.14644, 2024a.

Deng, C., Zhao, Y., Tang, X., Gerstein, M., and Cohan, A.
Investigating data contamination in modern benchmarks
for large language models. In Proceedings of the 2024
Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language
Technologies (Volume 1: Long Papers), pp. 8698–8711,
2024b.

Dodge, J., Sap, M., Marasović, A., Agnew, W., Ilharco, G.,
Groeneveld, D., Mitchell, M., and Gardner, M. Docu-
menting large webtext corpora: A case study on the colos-
sal clean crawled corpus. In Proceedings of the 2021
Conference on Empirical Methods in Natural Language
Processing, pp. 1286–1305, 2021.

Dong, Q., Li, L., Dai, D., Zheng, C., Ma, J., Li, R., Xia,
H., Xu, J., Wu, Z., Chang, B., et al. A survey on in-
context learning. In Proceedings of the 2024 Conference
on Empirical Methods in Natural Language Processing,
pp. 1107–1128, 2024a.

Dong, Y., Jiang, X., Liu, H., Jin, Z., Gu, B., Yang, M., and
Li, G. Generalization or memorization: Data contamina-
tion and trustworthy evaluation for large language models.
arXiv preprint arXiv:2402.15938, 2024b.

Duan, S., Khona, M., Iyer, A., Schaeffer, R., and Fiete, I. R.
Uncovering latent memories: Assessing data leakage and
memorization patterns in large language models. arXiv
preprint arXiv:2406.14549, 2024.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Dubois, Y., Galambosi, B., Liang, P., and Hashimoto, T. B.
Length-controlled alpacaeval: A simple way to debias
automatic evaluators. arXiv preprint arXiv:2404.04475,
2024.

Elangovan, A., He, J., and Verspoor, K. Memorization vs.
generalization: Quantifying data leakage in nlp perfor-
mance evaluation. In Proceedings of the 16th Conference
of the European Chapter of the Association for Computa-
tional Linguistics: Main Volume, pp. 1325–1335, 2021.

Gan, R., Wu, Z., Sun, R., Lu, J., Wu, X., Zhang, D.,
Pan, K., Yang, P., Yang, Q., Zhang, J., et al. Ziya2:
Data-centric learning is all llms need. arXiv preprint
arXiv:2311.03301, 2023.

9

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774

Preference Leakage: A Contamination Problem in LLM-as-a-judge

Gao, M., Ruan, J., Sun, R., Yin, X., Yang, S., and Wan,
X. Human-like summarization evaluation with chatgpt.
arXiv preprint arXiv:2304.02554, 2023.

Golchin, S. and Surdeanu, M. Time travel in llms: Trac-
ing data contamination in large language models. arXiv
preprint arXiv:2308.08493, 2023.

Hu, S., Luo, Y., Wang, H., Cheng, X., Liu, Z., and Sun, M.
Won’t get fooled again: Answering questions with false
premises. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Volume 1:
Long Papers), pp. 5626–5643, 2023.

Huang, Y., Shi, J., Li, Y., Fan, C., Wu, S., Zhang, Q., Liu, Y.,
Zhou, P., Wan, Y., Gong, N. Z., et al. Metatool benchmark
for large language models: Deciding whether to use tools
and which to use. arXiv preprint arXiv:2310.03128, 2023.

Huang, Y., Sun, L., Wang, H., Wu, S., Zhang, Q., Li, Y.,
Gao, C., Huang, Y., Lyu, W., Zhang, Y., et al. Posi-
tion: Trustllm: Trustworthiness in large language models.
In International Conference on Machine Learning, pp.
20166–20270. PMLR, 2024.

Jaech, A., Kalai, A., Lerer, A., Richardson, A., El-Kishky,
A., Low, A., Helyar, A., Madry, A., Beutel, A., Car-
ney, A., et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., Casas, D. d. l., Bressand, F., Lengyel, G.,
Lample, G., Saulnier, L., et al. Mistral 7b. arXiv preprint
arXiv:2310.06825, 2023.

Jiang, B., Li, D., Tan, Z., Zhou, X., Rao, A., Lerman, K.,
Bernard, H. R., and Liu, H. Assessing the impact of
conspiracy theories using large language models. arXiv
preprint arXiv:2412.07019, 2024a.

Jiang, M., Liu, K. Z., Zhong, M., Schaeffer, R., Ouyang,
S., Han, J., and Koyejo, S. Investigating data contami-
nation for pre-training language models. arXiv preprint
arXiv:2401.06059, 2024b.

Kaufman, S., Rosset, S., Perlich, C., and Stitelman, O. Leak-
age in data mining: Formulation, detection, and avoid-
ance. ACM Transactions on Knowledge Discovery from
Data (TKDD), 6(4):1–21, 2012.

Kim, S., Shin, J., Cho, Y., Jang, J., Longpre, S., Lee, H., Yun,
S., Shin, S., Kim, S., Thorne, J., et al. Prometheus: Induc-
ing fine-grained evaluation capability in language models.
In The Twelfth International Conference on Learning
Representations, 2023.

Kim, S., Suk, J., Longpre, S., Lin, B. Y., Shin, J.,
Welleck, S., Neubig, G., Lee, M., Lee, K., and Seo, M.

Prometheus 2: An open source language model special-
ized in evaluating other language models. arXiv preprint
arXiv:2405.01535, 2024.

Koo, R., Lee, M., Raheja, V., Park, J. I., Kim, Z. M.,
and Kang, D. Benchmarking cognitive biases in
large language models as evaluators. arXiv preprint
arXiv:2309.17012, 2023.

Köpf, A., Kilcher, Y., von Rütte, D., Anagnostidis, S.,
Tam, Z. R., Stevens, K., Barhoum, A., Nguyen, D., Stan-
ley, O., Nagyfi, R., et al. Openassistant conversations-
democratizing large language model alignment. Advances
in Neural Information Processing Systems, 36, 2024.

Lee, H., Phatale, S., Mansoor, H., Mesnard, T., Ferret, J.,
Lu, K. R., Bishop, C., Hall, E., Carbune, V., Rastogi,
A., et al. Rlaif vs. rlhf: Scaling reinforcement learning
from human feedback with ai feedback. In Forty-first
International Conference on Machine Learning, 2024.

Lee, S., Zhou, J., Ao, C., Li, K., Du, X., He, S., Liu, J., Yang,
M., Wen, Z., and Ni, S. Distillation quantification for
large language models. arXiv preprint arXiv:2501.12619,
2025.

Li, C. and Flanigan, J. Task contamination: Language mod-
els may not be few-shot anymore. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 38,
pp. 18471–18480, 2024.

Li, D., Jiang, B., Huang, L., Beigi, A., Zhao, C., Tan, Z.,
Bhattacharjee, A., Jiang, Y., Chen, C., Wu, T., et al. From
generation to judgment: Opportunities and challenges of
llm-as-a-judge. arXiv preprint arXiv:2411.16594, 2024a.

Li, D., Tan, Z., Chen, T., and Liu, H. Contextualization dis-
tillation from large language model for knowledge graph
completion. arXiv preprint arXiv:2402.01729, 2024b.

Li, D., Yang, S., Tan, Z., Baik, J. Y., Yun, S., Lee, J.,
Chacko, A., Hou, B., Duong-Tran, D., Ding, Y., et al.
Dalk: Dynamic co-augmentation of llms and kg to an-
swer alzheimer’s disease questions with scientific litera-
ture. arXiv preprint arXiv:2405.04819, 2024c.

Li, D., Tan, Z., and Liu, H. Exploring large language models
for feature selection: A data-centric perspective. ACM
SIGKDD Explorations Newsletter, 26(2):44–53, 2025.

Li, M., Chen, L., Chen, J., He, S., Gu, J., and Zhou, T. Selec-
tive reflection-tuning: Student-selected data recycling for
llm instruction-tuning. arXiv preprint arXiv:2402.10110,
2024d.

Li, T., Chiang, W.-L., Frick, E., Dunlap, L., Wu, T., Zhu, B.,
Gonzalez, J. E., and Stoica, I. From crowdsourced data to
high-quality benchmarks: Arena-hard and benchbuilder
pipeline. arXiv preprint arXiv:2406.11939, 2024e.

10

Preference Leakage: A Contamination Problem in LLM-as-a-judge

Li, X., Zhang, T., Dubois, Y., Taori, R., Gulrajani, I.,
Guestrin, C., Liang, P., and Hashimoto, T. B. Alpacaeval:
An automatic evaluator of instruction-following models,
2023.

Lin, C.-Y. Rouge: A package for automatic evaluation
of summaries. In Text summarization branches out, pp.
74–81, 2004.

Lin, S., Hilton, J., and Evans, O. Truthfulqa: Measuring
how models mimic human falsehoods. In Proceedings of
the 60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pp. 3214–
3252, 2022.

Liu, C.-W., Lowe, R., Serban, I., Noseworthy, M., Charlin,
L., and Pineau, J. How NOT to evaluate your dialogue sys-
tem: An empirical study of unsupervised evaluation met-
rics for dialogue response generation. In Su, J., Duh, K.,
and Carreras, X. (eds.), Proceedings of the 2016 Confer-
ence on Empirical Methods in Natural Language Process-
ing, pp. 2122–2132, Austin, Texas, 2016. Association for
Computational Linguistics. doi: 10.18653/v1/D16-1230.
URL https://aclanthology.org/D16-1230.

Liu, W., Zeng, W., He, K., Jiang, Y., and He, J. What makes
good data for alignment? a comprehensive study of auto-
matic data selection in instruction tuning. In The Twelfth
International Conference on Learning Representations,
2024.

Liu, X., Lei, X., Wang, S., Huang, Y., Feng, Z., Wen, B.,
Cheng, J., Ke, P., Xu, Y., Tam, W. L., et al. Alignbench:
Benchmarking chinese alignment of large language mod-
els. arXiv preprint arXiv:2311.18743, 2023a.

Liu, X., Yu, H., Zhang, H., Xu, Y., Lei, X., Lai, H., Gu, Y.,
Ding, H., Men, K., Yang, K., et al. Agentbench: Evalu-
ating llms as agents. arXiv preprint arXiv:2308.03688,
2023b.

Ni, J., Xue, F., Yue, X., Deng, Y., Shah, M., Jain, K., Neu-
big, G., and You, Y. Mixeval: Deriving wisdom of the
crowd from llm benchmark mixtures. arXiv preprint
arXiv:2406.06565, 2024.

Panickssery, A., Bowman, S. R., and Feng, S. Llm evalu-
ators recognize and favor their own generations. arXiv
preprint arXiv:2404.13076, 2024.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. Bleu:
a method for automatic evaluation of machine transla-
tion. In Proceedings of the 40th annual meeting of the
Association for Computational Linguistics, pp. 311–318,
2002.

Rafailov, R., Sharma, A., Mitchell, E., Manning, C. D., Er-
mon, S., and Finn, C. Direct preference optimization:
Your language model is secretly a reward model. Ad-
vances in Neural Information Processing Systems, 36,
2024.

Reiter, E. A structured review of the validity of BLEU.
Computational Linguistics, 44(3):393–401, 2018. doi: 10.
1162/coli a 00322. URL https://aclanthology.
org/J18-3002.

Shi, J., Yuan, Z., Liu, Y., Huang, Y., Zhou, P., Sun,
L., and Gong, N. Z. Optimization-based prompt in-
jection attack to llm-as-a-judge. In Proceedings of
the 2024 on ACM SIGSAC Conference on Computer
and Communications Security, CCS ’24, pp. 660–674,
New York, NY, USA, 2024. Association for Comput-
ing Machinery. ISBN 9798400706363. doi: 10.1145/
3658644.3690291. URL https://doi.org/10.
1145/3658644.3690291.

Shumailov, I., Shumaylov, Z., Zhao, Y., Papernot, N., Ander-
son, R., and Gal, Y. Ai models collapse when trained on
recursively generated data. Nature, 631(8022):755–759,
2024.

Sun, R., Liu, M., Yang, S., Wang, R., He, J., and Zhang, J.
Fostering natural conversation in large language models
with nico: a natural interactive conversation dataset. arXiv
preprint arXiv:2408.09330, 2024a.

Sun, T., Zhang, X., He, Z., Li, P., Cheng, Q., Liu, X.,
Yan, H., Shao, Y., Tang, Q., Zhang, S., Zhao, X., Chen,
K., Zheng, Y., Zhou, Z., Li, R., Zhan, J., Zhou, Y.,
Li, L., Yang, X., Wu, L., Yin, Z., Huang, X., Jiang,
Y.-G., and Qiu, X. Moss: An open conversational
large language model. Machine Intelligence Research,
2024b. ISSN 2731-5398. URL https://github.
com/OpenMOSS/MOSS.

Tan, Z., Li, D., Wang, S., Beigi, A., Jiang, B., Bhattacharjee,
A., Karami, M., Li, J., Cheng, L., and Liu, H. Large
language models for data annotation and synthesis: A sur-
vey. In Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing, pp. 930–957,
2024.

Team, G., Georgiev, P., Lei, V. I., Burnell, R., Bai, L.,
Gulati, A., Tanzer, G., Vincent, D., Pan, Z., Wang, S.,
et al. Gemini 1.5: Unlocking multimodal understand-
ing across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

Thakur, A. S., Choudhary, K., Ramayapally, V. S.,
Vaidyanathan, S., and Hupkes, D. Judging the judges:
Evaluating alignment and vulnerabilities in llms-as-
judges. arXiv preprint arXiv:2406.12624, 2024.

11

https://aclanthology.org/D16-1230
https://aclanthology.org/J18-3002
https://aclanthology.org/J18-3002
https://doi.org/10.1145/3658644.3690291
https://doi.org/10.1145/3658644.3690291
https://github.com/OpenMOSS/MOSS
https://github.com/OpenMOSS/MOSS

Preference Leakage: A Contamination Problem in LLM-as-a-judge

Tong, Y., Li, D., Wang, S., Wang, Y., Teng, F., and Shang,
J. Can llms learn from previous mistakes? investigat-
ing llms’ errors to boost for reasoning. arXiv preprint
arXiv:2403.20046, 2024.

Wang, S., Tong, Y., Zhang, H., Li, D., Zhang, X., and Chen,
T. Bpo: Towards balanced preference optimization be-
tween knowledge breadth and depth in alignment. arXiv
preprint arXiv:2411.10914, 2024.

White, C., Dooley, S., Roberts, M., Pal, A., Feuer, B., Jain,
S., Shwartz-Ziv, R., Jain, N., Saifullah, K., Naidu, S.,
et al. Livebench: A challenging, contamination-free llm
benchmark. arXiv preprint arXiv:2406.19314, 2024.

Wu, S., Huang, Y., Gao, C., Chen, D., Zhang, Q., Wan, Y.,
Zhou, T., Zhang, X., Gao, J., Xiao, C., et al. Unigen: A
unified framework for textual dataset generation using
large language models. arXiv preprint arXiv:2406.18966,
2024.

Xu, C., Sun, Q., Zheng, K., Geng, X., Zhao, P., Feng, J., Tao,
C., and Jiang, D. Wizardlm: Empowering large language
models to follow complex instructions. arXiv preprint
arXiv:2304.12244, 2023.

Yang, A., Yang, B., Zhang, B., Hui, B., Zheng, B., Yu,
B., Li, C., Liu, D., Huang, F., Wei, H., et al. Qwen2. 5
technical report. arXiv preprint arXiv:2412.15115, 2024.

Yang, S., Sun, R., and Wan, X. A new dataset and empirical
study for sentence simplification in chinese. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp.
8306–8321, 2023.

Yao, F., Zhuang, Y., Sun, Z., Xu, S., Kumar, A., and Shang,
J. Data contamination can cross language barriers. arXiv
preprint arXiv:2406.13236, 2024.

Ye, J., Wang, Y., Huang, Y., Chen, D., Zhang, Q., Moniz, N.,
Gao, T., Geyer, W., Huang, C., Chen, P.-Y., et al. Justice
or prejudice? quantifying biases in llm-as-a-judge. arXiv
preprint arXiv:2410.02736, 2024.

Zhang, H., Li, D., Li, Y., Shang, C., Shi, C., and Jiang, Y.
Assisting language learners: Automated trans-lingual def-
inition generation via contrastive prompt learning. arXiv
preprint arXiv:2306.06058, 2023.

Zhang, H., Shang, C., Wang, S., Zhang, D., Yao, F., Sun,
R., Yu, Y., Yang, Y., and Wei, F. Shifcon: Enhancing
non-dominant language capabilities with a shift-based
contrastive framework. arXiv preprint arXiv:2410.19453,
2024a.

Zhang, H., Wu, Y., Li, D., Yang, Z., Zhao, R., Jiang, Y., and
Tan, F. Balancing speciality and versatility: a coarse to

fine framework for supervised fine-tuning large language
model. arXiv preprint arXiv:2404.10306, 2024b.

Zhang, Q., Gao, C., Chen, D., Huang, Y., Huang, Y.,
Sun, Z., Zhang, S., Li, W., Fu, Z., Wan, Y., and Sun,
L. LLM-as-a-coauthor: Can mixed human-written and
machine-generated text be detected? In Duh, K., Gomez,
H., and Bethard, S. (eds.), Findings of the Association
for Computational Linguistics: NAACL 2024, pp. 409–
436, Mexico City, Mexico, June 2024c. Association
for Computational Linguistics. doi: 10.18653/v1/2024.
findings-naacl.29. URL https://aclanthology.
org/2024.findings-naacl.29/.

Zhang, T., Kishore, V., Wu, F., Weinberger, K. Q., and Artzi,
Y. Bertscore: Evaluating text generation with bert. In
International Conference on Learning Representations,
2020.

Zhang, X., Peng, B., Tian, Y., Zhou, J., Jin, L., Song,
L., Mi, H., and Meng, H. Self-alignment for fac-
tuality: Mitigating hallucinations in LLMs via self-
evaluation. In Ku, L.-W., Martins, A., and Srikumar,
V. (eds.), Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Volume
1: Long Papers), pp. 1946–1965, Bangkok, Thailand,
August 2024d. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.acl-long.107. URL https:
//aclanthology.org/2024.acl-long.107/.

Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z.,
Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al. Judging
llm-as-a-judge with mt-bench and chatbot arena. Ad-
vances in Neural Information Processing Systems, 36:
46595–46623, 2023.

Zheng, Y., Zhang, R., Zhang, J., Ye, Y., Luo, Z., Feng, Z.,
and Ma, Y. Llamafactory: Unified efficient fine-tuning of
100+ language models. arXiv preprint arXiv:2403.13372,
2024.

Zhong, M., Liu, Y., Yin, D., Mao, Y., Jiao, Y., Liu, P.,
Zhu, C., Ji, H., and Han, J. Towards a unified multi-
dimensional evaluator for text generation. In Gold-
berg, Y., Kozareva, Z., and Zhang, Y. (eds.), Proceed-
ings of the 2022 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2022, Abu
Dhabi, United Arab Emirates, December 7-11, 2022,
pp. 2023–2038. Association for Computational Linguis-
tics, 2022. doi: 10.18653/V1/2022.EMNLP-MAIN.
131. URL https://doi.org/10.18653/v1/
2022.emnlp-main.131.

Zhong, M., Zhang, A., Wang, X., Hou, R., Xiong, W., Zhu,
C., Chen, Z., Tan, L., Bi, C., Lewis, M., et al. Law of the
weakest link: Cross capabilities of large language models.
arXiv preprint arXiv:2409.19951, 2024.

12

https://aclanthology.org/2024.findings-naacl.29/
https://aclanthology.org/2024.findings-naacl.29/
https://aclanthology.org/2024.acl-long.107/
https://aclanthology.org/2024.acl-long.107/
https://doi.org/10.18653/v1/2022.emnlp-main.131
https://doi.org/10.18653/v1/2022.emnlp-main.131

Preference Leakage: A Contamination Problem in LLM-as-a-judge

Zhou, C., Liu, P., Xu, P., Iyer, S., Sun, J., Mao, Y., Ma, X.,
Efrat, A., Yu, P., Yu, L., et al. Lima: Less is more for
alignment. Advances in Neural Information Processing
Systems, 36, 2024.

Zhuge, M., Zhao, C., Ashley, D., Wang, W., Khizbullin, D.,
Xiong, Y., Liu, Z., Chang, E., Krishnamoorthi, R., Tian,
Y., et al. Agent-as-a-judge: Evaluate agents with agents.
arXiv preprint arXiv:2410.10934, 2024.

13

Preference Leakage: A Contamination Problem in LLM-as-a-judge

A. Preliminary Study of Preference Leakage in Real World
In our preliminary study, we investigate whether preference leakage is a real-world issue in mainstream leaderboards and
benchmarks. To this end, we examine two widely used LLM-as-a-judge leaderboards (AlpacaEval 2.0 and Arena-Hard) and
a well-known benchmark (MTBench). All three rely on GPT-4 as the judge model and report pairwise judgment results for
various LLMs. Our analysis reveals that several candidate models distilled from GPT-4 or other GPT-series models (e.g.,
Vicuna and Alpaca) appear across all these leaderboards and benchmarks, suggesting that preference leakage is a pervasive
issue in these datasets. Besides, we also examine if preference leakage exists in LLM-relevant research studies and also find
a bunch of work utilizing the same or related model(s) to do distillation/ data synthesis and evaluation (Yang et al., 2023;
Liu et al., 2024; Lee et al., 2024; Li et al., 2024d; Wang et al., 2024; Sun et al., 2024a). All of these suggest preference
leakage to be a widespread problem in both LLM-as-a-judge datasets and LLM-relevant research.

B. Experiment Details
B.1. Training Details

We use LLaMA-Factory (Zheng et al., 2024), an efficient LLM tuning library for our experiment. The maximum sequence
length is set to 1024 tokens, and a cutoff length of 1024 tokens is enforced to prevent excessive tokenization. The data
preprocessing will be done in parallel with 16 workers to speed up the preparation process. The training use a per-device
batch size of 2, with gradient accumulation over 2 steps to simulate a larger batch size for SFT and a per-device batch size of
1, with gradient accumulation over 4 steps to simulate a larger batch size for DPO. The learning rate is set to 1.0e-5 and each
model will be trained for 3 epochs. A cosine learning rate scheduler is used with a warmup ratio of 0.1 to gradually increase
the learning rate during the initial steps. All of the experiments use BF16 precision to speed up training while maintaining
numerical stability. All the experiments are conducted in an 8 Nvidia A100 GPU cluster with CUDA version 11.8.

Judge Model Mistral-GPT-4o vs Mistral-Gemini-1.5

Mistral-GPT-4o Wins Mistral-Gemini-1.5 Wins
GPT-4o 55.1% 44.9%
Gemini-1.5 36.8% 63.2%
Preference Leakage Score 18.4%

Table 5. A case on AlpacaEval 2.0 with the model pair Mistral-GPT-4o vs Mistral-Gemini-1.5 to demonstrate how the preference leakage
score is calculated.

B.2. Detailed Explanation for Preference Leakage Score

We present a case in Table B.1 to show how we calculate the preference leakage score for the Mistral-GPT-4o vs Mistral-
Gemini-1.5 pair on AlpacaEval 2.0. Based on the definition of preference leakage score, we first calculate:

AVG(Mistral-GPT-4o,Mistral-Gemini-1.5) =
55.1 + 36.8

2
= 45.95% (9)

AVG(Mistral-Gemini-1.5,Mistral-GPT-4o) =
63.2 + 44.9

2
= 54.05% (10)

After that, we calculate the preference leakage score:

PLS(Mistral-GPT-4o,Mistral-Gemini-1.5) =

(
55.1−45.95

45.95

)
+
(
63.2−54.05

54.05

)
2

= 18.4% (11)

.

B.3. Manual Annotation Details

We randomly sample 100 questions from AlpacaEval 2.0 and ask three well-trained annotators to conduct pairwise
comparisons of the responses from each model pair for these questions. For annotation efficiency, we also develop an
annotation tool that involves the function of uploading multiple model responses, jumping to specific problems, and

14

Preference Leakage: A Contamination Problem in LLM-as-a-judge

downloading annotation results (Figure 8). After annotation, we adopt the majority voting to get the final label for each
response pair. We also calculate the average agreement of three annotators and find it to be 78.6, indicating a relatively
consistent annotation result.

C. Learning Method Analysis Details
The table below presents the prompt we use to generate synthetic pairwise feedback from each model.

Pairwise Feedback Prompt

Please act as an impartial judge and evaluate the quality of the responses provided
by two AI assistants to the user question displayed below. Your evaluation should
consider correctness and helpfulness. You will be given assistant A’s answer,
and assistant B’s answer. Your job is to evaluate which assistant’s answer is
better. You should independently solve the user question step-by-step first.
Then compare both assistants’ answers with your answer. Identify and correct
any mistakes. Avoid any position biases and ensure that the order in which the
responses were presented does not influence your decision. Do not allow the length
of the responses to influence your evaluation. Do not favor certain names of the
assistants. Be as objective as possible. After providing your explanation, output
your final verdict by strictly following this format: "[[A]]" if assistant A is
better, "[[B]]" if assistant B is better.

Instruction:

[The Start of Assistant A’s Answer]
[RESPONSE A]
[The End of Assistant A’s Answer]

[The Start of Assistant B’s Answer]
[RESPONSE B]
[The End of Assistant B’s Answer]

Please output the generated content in a json format, for example: { "reason": //
string, reasons behind the chosen preferred answer "prefered answer": // string,
the prefered answer you selected, [[A]] or [[B]] }

Formatted the abovementioned schema and produce the reason and preferred answer:

D. Recogniton Analysis Details
The table below presents the prompt we use for the recognition analysis.

Recognition Prompt

Given an instruction and a response, your task is to judge whether this response
is generated by a model that is trained on a synthetic dataset you produced (your
student model).

Instruction: [INSTRUCTION]

Response: [Response]

Please output the generated content in a json format, for example: "reason": //
string, reasons behind the judgment "judgment": // string, whether the answer is
generated by your student model, choose from yes or no

Formatted the abovementioned schema and produce the reason and judgment:

For response classification, we split all the response from three student models into training (80%) and testing (20%) subsets.

15

Preference Leakage: A Contamination Problem in LLM-as-a-judge

Figure 8. The annotation tool we develop for annotation efficiency.

Then, we finetune a BERT-base-uncased model in the training set. The model is trained for 3 epochs with a learning rate of
2e-5, a batch size of 16 for both training and evaluation, and a weight decay of 0.01, with evaluations conducted at the end
of each epoch.

E. Category Analysis Details
The tables below present the prompt we use for question type and judgment dimension cateogory analysis.

Question Type Categorization Prompt

Given a question, please categorize it to one of the following categories:

1. Computer Science & Programming
2. Mathematics & Statistics
3. Science & Engineering
4. Business & Finance
5. Writing & Communication
6. Social & Daily Life
7. Others

Question: [QUESTION]

Please output the generated content in a json format, for example: { "question
category": // string, specific category name, such as "Computer Science &
Programming" }

Formatted the abovementioned schema and categorize the given question:

16

Preference Leakage: A Contamination Problem in LLM-as-a-judge

Judgment Dimension Categorization Prompt

Given a pairwise comparison judgment made by an AI, please categorize each
considered aspect in the rationale to one of the following categories:

{

"Factuality": "Whether the information provided in the response is accurate, based
on reliable facts and data.",

"User Satisfaction": "Whether the response meets the user’s question and needs, and
provides a comprehensive and appropriate answer to the question.",

"Logical Coherence": "Whether the response maintains overall consistency and
logical coherence between different sections, avoiding self-contradiction.",

"Richness": "Whether the response includes rich info, depth, context, diversity,
detailed explanations and examples to meet user needs and provide a comprehensive
understanding.",

"Creativity": "Whether the response is innovative or unique, providing novel
insights or solutions.",

"Fairness and Responsibility": "Whether the advice or information provided in the
response is feasible, carries acertain degree of responsibility, and considers
potential risks and consequences.",

"Completeness": "Whether the response provides sufficient information and details
to meet the user’s needs, and whether it avoids omitting important aspects.",

"Clarity": "Whether the response is clear and understandable, and whether it uses
concise language and structure so that the user can easily understand it.",

"Others": "Other aspects which is not listed above."
}

Judgment: [JUDGMENT]

Please output the generated content in a json format, for example: { "Factuality":
// list, all aspects that belong to this category, such as ["correctness",
"mistakes"] ... }

Formatted the abovementioned schema and categorize aspects in the judgment:

17

