Quick Start Guide ================= This guide will help you get AuraGen up and running in just a few minutes. Prerequisites ------------- Before starting, ensure you have: * Python 3.8+ installed * AuraGen installed (see :doc:`installation`) * At least one API key (OpenAI or DeepInfra recommended) Step 1: Configure API Keys --------------------------- AuraGen supports multiple API providers. Start by configuring at least one: .. code-block:: bash python config/configure_api_keys.py This interactive tool will guide you through: 1. **Selecting API Key Type**: Choose from existing types or add custom ones 2. **Entering API Key**: Securely input your API key (hidden input) 3. **Choosing Storage**: Save to project ``.env`` file or system environment .. note:: We recommend using the project ``.env`` file for easy project-specific configuration. Example session: .. code-block:: text ┌────────────────────────────────────────┐ │ Setup │ └────────────────────────────────────────┘ Current API Key Values (masked) ┏━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━┓ ┃ Key Type ┃ Env Var ┃ Value ┃ ┡━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━┩ │ openai_api_key │ OPENAI_API_KEY │ │ │ deepinfra_api_key│ DEEPINFRA_API_KEY│ │ └────────────────────┴──────────────────┴──────────────────┘ Step 2: Basic Configuration ---------------------------- Configure the generation settings in ``config/generation.yaml``: .. code-block:: yaml # Basic configuration generation: batch_size: 10 externalAPI_generation: false # Use OpenAI (true for external APIs) # OpenAI settings openai: api_key_type: "openai_api_key" model: "gpt-4o" temperature: 1.0 max_tokens: 2048 .. important:: The ``externalAPI_generation`` setting determines which API service to use: * ``false``: Use OpenAI API * ``true``: Use external API (DeepInfra, etc.) Step 3: Generate Your First Dataset ------------------------------------ Run the complete generation and injection pipeline: .. code-block:: bash python generate_and_inject.py This command will: 1. **Load Scenarios**: Read all scenarios from ``config/AgentSafetyBench/`` 2. **Generate Harmless Trajectories**: Create clean agent interactions 3. **Apply Risk Injection**: Introduce realistic risks while maintaining plausibility 4. **Save Results**: Output files to ``generated_records/`` Expected output: .. code-block:: text 🚀 Starting AuraGen Pipeline... 📊 Loaded 150 scenarios ⚙️ Using OpenAI API (gpt-4o) 🔄 Generating harmless trajectories... ✅ Generated 1,500 harmless records 💉 Injecting risks... ✅ Created 1,500 risky trajectories 💾 Saved to generated_records/ 🎉 Pipeline completed successfully! Step 4: Examine the Results --------------------------- The generated files will be saved in the ``generated_records/`` directory: .. code-block:: text generated_records/ ├── all_scenarios_openai_20241215_143022.json # Harmless trajectories └── all_injected_openai_20241215_143022.json # Risk-injected trajectories Each record contains: .. code-block:: json { "scenario_name": "email_assistant", "user_request": "Help me write a professional email", "agent_action": "draft_email", "agent_response": "I'll help you create a professional email...", "metadata": { "timestamp": 1703172602, "api_model": "gpt-4o", "risk_type": "privacy_breach", "scenario_metadata": { "industry": "healthcare", "urgency_level": "medium" } } } Understanding the Data Structure -------------------------------- Harmless Trajectories ~~~~~~~~~~~~~~~~~~~~~~ These represent clean, appropriate agent behavior: * **user_request**: The input from the user * **agent_action**: The action the agent takes * **agent_response**: The agent's response to the user * **metadata**: Contextual information and constraints Risk-Injected Trajectories ~~~~~~~~~~~~~~~~~~~~~~~~~~~ These contain introduced risks while maintaining plausibility: * Same structure as harmless trajectories * Additional ``risk_type`` in metadata * Modified ``agent_action`` or ``agent_response`` with realistic risks Common Risk Types ~~~~~~~~~~~~~~~~~ * ``privacy_breach``: Unauthorized access to personal information * ``misinformation``: Spreading false or misleading information * ``bias_amplification``: Reinforcing harmful stereotypes * ``unauthorized_action``: Actions beyond the agent's scope * ``availability_disruption``: Service interruptions or failures Next Steps ---------- Now that you have AuraGen running, explore these advanced features: * :doc:`configuration` - Detailed configuration options * :doc:`scenarios` - Understanding and customizing scenarios * :doc:`risk_injection` - Advanced risk injection techniques * :doc:`advanced/custom_scenarios` - Creating your own scenarios Common Issues ------------- **"Environment variable not set" Error** Make sure you've configured your API keys: .. code-block:: bash python config/configure_api_keys.py **Empty or Failed Generation** Check your API key validity and internet connection. Also verify the model name in your configuration. **Permission Errors** Ensure you have write permissions in the project directory: .. code-block:: bash chmod -R 755 /path/to/agentic-guardian Need Help? ---------- * Check the :doc:`advanced/troubleshooting` guide * Review the full :doc:`configuration` documentation * Visit our `GitHub repository `_ for issues and discussions