AuraGen Documentation ===================== Welcome to AuraGen, a sophisticated data generation engine designed to produce diverse, high-quality risky trajectories for Agentic Systems. .. image:: https://img.shields.io/badge/Python-3.8%2B-blue :alt: Python Version :target: https://python.org .. image:: https://img.shields.io/badge/License-MIT-green.svg :alt: License :target: https://opensource.org/licenses/MIT Overview -------- AuraGen operates in two distinct stages: 1. **Generate Harmless Trajectories**: Create clean, task-oriented agent action/response traces across many scenarios 2. **Inject Risk**: Programmatically mutate the harmless trajectories to introduce realistic risks while maintaining coherence and plausibility Key Features ------------ - Flexible API Integration (OpenAI, external APIs, custom providers) - Dynamic Configuration via YAML (including custom API key types) - Comprehensive Risk Injection Framework - Scenario-based Design with Constraints Quick Start ----------- .. code-block:: bash # Clone the repository git clone cd Agentic-Guardian conda create -n aura python=3.11 -y conda activate aura # Install dependencies pip install -r requirements.txt --upgrade # Configure API keys python config/configure_api_keys.py # Generate and inject risks python generate_and_inject.py Table of Contents ----------------- .. toctree:: :maxdepth: 2 :caption: User Guide installation quickstart configuration scenarios risk_injection .. toctree:: :maxdepth: 2 :caption: Advanced Topics advanced/custom_scenarios advanced/api_integration advanced/extending advanced/troubleshooting .. toctree:: :maxdepth: 1 :caption: Development contributing changelog license Indices and Tables ================== * :ref:`genindex` * :ref:`modindex` * :ref:`search`